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T F 7 % : Mend the Fence After or Before the Sheep Are Lost What is Adversarial Examples

Adversarial Machine Learning as “Fence Repair”: In adversarial machine learning, this an- = = Adversarial examples are inputs that appear normal but are 1n-
cient proverb offers a fitting analogy: a model gets fooled, we investigate why, and then strengthen = = tentionally modified in subtle ways to fool a machine learning
it against potential attacks. This reactive cycle—discovering vulnerabilities through attacks, then = = model. These changes are often imperceptible to humans, yet

repairing them—resembles fixing a fence only after the sheep have got lost. they can cause the model to make incorrect predictions.
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Attacking the model: misclassification via Inspecting the model: revealing and repairing e > Has Diabetes
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Mend the fence BEFORE the sheep are lost: Rather than relying on external attacks to expose Blood -' Blood
model vulnerabilities after failure, we aim to discover weaknesses in advance by designing new p’;ﬁ:re p':i?:'e
adversarial attack algorithms that can reveal weak spots in the model before they cause failure. thickness 10 thickness = 0
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i BMI  20.4 BMI 405
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Gaps: a. The imperceptibility of adversarial attacks on tabular data y— £(@) Age - Age %0

requires approaching different concepts compared to those for 1m-
ages. b. Current adversarial attacks lack imperceptibility metrics
tailored for tabular data. ¢. No benchmark evaluates existing attacks
under tabular imperceptibility criteria. d. Existing attacks are not
designed for tabular imperceptibility properties.

Investigating Tabular Imperceptibility |[1]

RQ1: What properties can be used to define the imperceptibility of
adversarial attacks on tabular data?

RQ2: Which attacks can generate adversarial examples that are
both effective and imperceptible?

RQ3: How can new adversarial attacks on tabular data be designed
to generate both effective and imperceptible adversarial examples?
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Highlights: a. Novel VAE-based framework generates imperceptible adversarial attacks for tab-
ular data. b. Latent space approach unifies mixed types of features into coherent representation. e X ﬁ‘m
¢. Propose In-Distribution Success Rate to assess the deviation of adversarial examples. d. Our @" 3.3 % qic-_:. ot
VAE attack achieves overall best performance across diverse datasets and models. Homepage GitHub XAMI Lab
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