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Can we trust Al models that are easily deceived?
What’s the cost of this fragility?
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Research Problem

How can one construct predictive
models that are robust to adversarial
attacks for tabular data?
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Test the ML Models Like Software

Software Testing

Purpose: Identify bugs and vulnerabilities.

Method: Test edge cases and unexpected inputs.

Goal: Ensure software is robust and reliable.
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Adversarial Attacks in Machine Learning

Poison Poisoning

Training
Data

Evaluation

Detection

l Evasion Input ’
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Output Extraction
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Machine Learning
Model
Evasion

Evaluation

Inference
Evaluation

Adversarial

Training

Purpose: Identify weaknesses in ML models.
Method: Craft inputs to exploit vulnerabilities.
Goal: Improve model robustness.




What are Adversarial Attacks?

An adversarial attack is a method to generate adversarial examples.

“Adversarial examples are specialised inputs created with the purpose of
confusing a neural network, resulting in the misclassification of a given
Input. These notorious inputs are indistinguishable to the human eye but cause
the network to fail to identify the contents of the image.” [1]
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Different Concepts of Imperceptibility

The perturbation on tabular data is more noticeable than images.

Original Input FGSM Attack Adversarial Example
No Diabetes > Has Diabetes

Original Input FGSM Attack Adversarial Examples
Class: Koala > Class: Velvet
Pregnancies 1 Pregnancies 6
Gluceose 7 Glucose 130
Blood Blood
pressure 48 pressure B
Skin Skin
thickness 18 thickness 0
Insulin 76 Insulin 329
BMI 204 BMI 40.5
Diabetes Diabetes
Pedigree 0.323 Pedigree 1.026
function function
Age 22 Age 40
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How existing works evaluate attacks?

Most attacks are

Benchmark/Paper Data Type
Benchmarking Transferable

Adversarial Attacks [2] Image
Benchmarking Adversarial Robustness

on Image Classification [3] Image
BlackboxBench: A Comprehensive

Benchmark [4] Image
RobustBench: Adversarial Robustnes$

Benchmark [5] Image
REAP: Realistic Adversarial Patch

Benchmark [6] Image
AttackBench: Gradient-based Attack

Evaluation [7] Image
Graph Robustness Benchmark [8] Graph Data
Adversarial VQA Benchmark [9] VQA
Benchmarking Adversarial Attacks and

Defenses for Time-Series Data [10] Time-series
From Hero to Zeroe: A Benchmark of Low-Level
Low-Level Adversarial Attacks [11] Text

White-box, Black-box Attacks

Black-box Adversarial Attacks

L, L, Norm-based Attacks
Patch-based Adversarial Attacks
Gradient-based Attacks
Adversarial Attacks on Graphs

Adversarial Attacks on VQA

Adversarial Attacks on Time-Series

designed for images.

valuation Metric

Main Focus

ttack Transferability Score

Robust Accuracy, L~ Norm
Attack Success Rate, Query
Count

Robust Accuracy

Patch Success Rate, Realism
Score

Adversarial Success Rate
Robust Accuracy

Robust Accuracy

Attack Success Rate

Attack Success Rate,
bati it ] I

Low-Level Adversarial Attacks on NLP Phonetic Similarity

Evaluates transferability of adversarial
attacks across different architectures

Benchmark for adversarial robustness

Most benchmarks

assess the effectiveness
of attacks only.
) OMInor Orruptior

robustness
Evaluates realistic adversarial patches in
real-world conditions
Focuses on gradient-based attacks for
generating adversarial examples
Benchmarks adversarial robustness of graph
machine learning models
Evaluates robustness of visual question
answering models to adversarial inputs
Evaluates adversarial attacks and defenses
specifically for time-series data
Benchmarks adversarial attacks targeting

low-level data manipulations (character-
level)

Refer to reference list in the end of slides



Research Roadmap

Phase 1 Phase 2 Phase 3
: : (, PR (, S
=... X Design newj Develop
H — X 9 defence
— — o tabular attack mechanisms
Tabular data _ o o Lv / L* /
|dentify ch_aracterlstlcs Benchmark existing Informed by Adversarial Training
of adversarial attacks on attacks based on e o
. . - benchmark insights Rule-based filtering
tabular data identified characteristics
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Characteristics of Adversarial Attacks on

Tabular Data

Effectiveness

« Model Accuracy
« Attack Success Rate

Imperceptibility

* No comprehensive

definition for tabular data

 Models
 Datasets

(Not in research scope)

‘ Transferability
|
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Research Question 1

What properties can be used to
define the imperceptibility of
adversarial attacks on tabular data?
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Quantitative Imperceptibility Properties (12
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Zhipeng (Zippo) He [12] He, Z., Ouyang, C., Alzubaidi, L., Barros, A., & Moreira, C. (2024). Investigating Imperceptibility of Adversarial
Attacks on Tabular Data: An Empirical Analysis. arXiv preprint arXiv:2407.11463. [Accepted, In Press]
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Qualitative Imperceptibility Properties [12]

Feature
interdependencies

12

ﬁ

Age Education Marital Status Occupation Relationship | Race | ... Income
- Masters Married-civ-spouse Exec-managerial Husband - ... >50K
28 HS-grad Never-married Craft-repair Other-relative | Asian | ... <=50K

\

Feasibility: Feasible Require Domain Knowledge of Tabular Data Immutability
feature range

Zhipeng (Zippo) He [12] He, Z., Ouyang, C., Alzubaidi, L., Barros, A., & Moreira, C. (2024). Investigating Imperceptibility of Adversarial
Attacks on Tabular Data: An Empirical Analysis. arXiv preprint arXiv:2407.11463. [Accepted, In Press]
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Research Question 2

Which attacks can generate
adversarial examples that are both
effective and imperceptible?
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Benchmark
Design

Find the smallest possible change

that flips a model's prediction

 \

Find a data point within attack

budget € that maximizestheloss ¥ —— | |

Harmonic mean of four
guantitative properties

Datasets
mixed

Adult
Census

numerical

Electricity

Generate
Adversarial
Examples

Train

FPredictive
Models
Train
T0%:
/
——} Validate
10%
\ Apply
Attack Methods
Test ﬁ
20%

Predictive Models

B 3

Logistic Multilayer
Regression Perceptron

i

TabTransformer FTTransformer

Attack Methods
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[C&W Attack

J L J
T T
bounded attacks

[ DeepFool
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unbounded attacks
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unbounded attacks

bounded attacks

Performance Metrics
Adversarial >
Performance
Imperceptibility Metrics
Analyse
Imperceptibility | Proximity ’ | Sparsity Deviation J {Sensitivity ‘
3 [ y J
T { Imperceptibility Score J

Gradient
Calculation
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Ineffective and perceptible
s ack = Gaussian | ] a“ac".zm/ Effective but perceptible
g T S 7= S I Y=
£ Effective and imperceptible
attack = BIM
1.0 A i . . .
g - Ineffective but imperceptible
e 081 E
@ 0.6 F'ms,s.t_a
E 0.4
go21 | Finding
1 0.181 0.181 1 0.181 .
Y 05 Y 05 o 00 05 To Only DeepFool can generate both effective
Imperceptibility Score Imperceptibility Score Imperceptibility Score and imperceptib|e adversarial examples

Divided into four sectors by maximum ASR value (0.659) and the minimum IS
value (0.181) of Gaussian Noise. Higher attack success rate is better. Lower
imperceptibility score is better.
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Imperceptibility Insights

« Sparsity: Any attack can perturb numerical features. Only PGD can change
categorical features on all models.

* Proximity: Unbounded attacks (DeepFool and C&W) generally make less
changes that bounded attacks (FGSM, PGD & BIM) in proximity metrics

« Deviation: Unbounded attacks (DeepFool and C&W) more likely generate in-
distribution attack examples than bounded attacks (FGSM, PGD & BIM)

Unbounded Attacks are more promising in generating
Imperceptible adversarial examples than bounded attack

Zhipeng (Zippo) He
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Limitation in Benchmark
One Hot Encoding I>ﬂ:<l
Is one-hot encoding suitable for adversarial (DD (D ><
attacks on tabular data? == (o)
_ _ _ - . Categorical Ie/ B\ l_Hf/ u\l If/ 1\| lf/ ﬂ\l -
« While one-hot encoding simplifies the handling of ~ feavres /o o Gj
categorical features by making them compatible e Flatten =S
with standard distance measurements (such as = RN
Zp norms) used for continuous features, it can Raoneal (05 ) + D
introduce more sparse feature space.
(02 VA
« Changing one categorical feature requires 7 </
perturbation on at least two encoded features. Bound: (0.1) (02)

Proximity of perturbing
categorical feature A from [EEEETE JO-1D2+(1-0)2=+2
True to False o =1

Proximity of perturbing one l, = J1-02=1
numerical feature from O to 1 t, =1
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Research Question 3

How can new adversarial attacks on
tabular data be designed to generate
both effective and imperceptible
adversarial examples?

Zhipe g(pr )H
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How to design new tabular attacks

What to do

« Use Unbounded Attacks
« Address properties of imperceptibility

What to avoid

* Make perturbation in original feature space

Zhipeng (Zippo) He
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O N g O | N g WOTr k To find an adversarial example in latent space,

Attack Loss = Lmoger(x, Xaav) + Laist(Z, Zaav) + Lspa

Generate adversarial example with a trained Variational Autoencoder (VAE)

T 9s(2|2) N(u(z),0*(z)) z Zady = Z + 02 Po(®|Zadv) T ek
z .
—p(z)—
> > -1-52 >
> o(z) — " ~4
gyt I
Gaussian Latent Latent Space
input Eneotier Distribution Vector  Perturbation Decoder Output
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Key Takeaways

T Proposing a set of imperceptibility properties and metrics for adversarial attacks
E on tabular data

Benchmarking existing tabular attack on both effectiveness and imperceptibility

@ Unbounded attacks are more promising in generating both effective and
Imperceptible adversarial examples

»~ Using VAE to map datasets into latent space and generating adversarial
*~ examples in latent space

Zhipeng (Zippo) He
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